shutterstock_1451245499.jpg
faq.png

レーザーのよくある質問

レーザー加工機の基本に関するFAQ

CO2レーザーとは?


CO2(炭酸ガス)を媒質として作り出されるレーザーです。 CO2、窒素、ヘリウムの混合ガスに放電を加えることで、増幅されたレーザー光を取り出します。当社では、高周波(RF)の交流励起によるスラブ式レーザー発振器を搭載したものと、従来のDC直流励起によるガラスレーザー発振管を搭載したレーザー加工機を取り扱っています。CO2レーザーは10.6μという長い波長を持っているため、透明な素材も含め、様々な素材へ加工を行うことが出来ます。 スラブ式レーザー発振器 スラブ式レーザーのメリット

  • ガラス管レーザーに比べて連続運転が可能
  • レーザーガスのリチャージ(再充填)が可能
  • 高品質なレーザービームを形成
  • RF励起によって高速のレーザーパルスが生成されるため、ガラス管レーザーに比べてラスタ加工の品質が高い(速く繊細)
  • 連続運転時でもレーザー出力にバラツキが生じにくい
  • 空冷方式のため、余分な冷却設備が必要ない
デメリット
  • ガラス製レーザー発振管に比べて高コスト

ガラス製レーザー発振管 ガラス管レーザーのメリット
  • スラブ式に比べて低コスト
ガラス管レーザーのデメリット
  • 水冷のため、水を使用する冷却モジュール(チラーなど)が必要
  • ガラス製なので壊れやすい(割れやすい)
  • 直流(DC)励起は、レーザーのパルスレートが制限されます。パルスの生成頻度が低いためラスター加工の速度と品質がスラブ式に比べて劣ります。
  • 直流(DC)励起によって発振管内部にある光学部品(増幅用反射ミラー)や電極にイオンが衝突することにより経年劣化が比較的早く進みます。劣化した発振管は再使用が出来ないため、新しいものと交換することになります。
  • ガラス管レーザーは加熱によって寿命が短縮しますので、長時間の連続加工は出来ません。




CO2レーザーで加工できる素材


CO2レーザーで加工できる素材は、こちらをご覧ください。 CO2レーザーで加工できる素材




ファイバーレーザーとは?


媒質に光ファイバーを使ったレーザーです。 CO2レーザーのように気体を媒質に使うのではなく、媒質に光ファイバーを使ったレーザーです。励起LD(半導体レーザー)で入射された励起光がファイバー内部で増幅され出力されます。ファイバーレーザーの利点は、CO2レーザーよりも遥かに長寿命(スペック値10万時間)で波長が1.06μと、CO2レーザーの1/10の波長を持っているため、金属への吸収率が高く、とくに金属加工に有効です。ただし、透明な材料は加工を行うことが出来ません。




ファイバーレーザーで加工できる素材


ファイバーレーザーで加工できる素材は、こちらをご覧ください。 ファイバーレーザーで加工できる素材




ラスター加工とベクター加工


ラスター加工はマーキングや彫刻、ベクター加工は切断加工 ラスタ加工とベクタ加工の違いは、一言で言ってしまうと、ラスター加工はマーキングや彫刻、ベクター加工は切断ということになります。ただし、それぞれの加工を使い分けるためには、加工するグラフィックをラスターグラフィック、ベクターグラフィックで作り分ける必要があります。 下の画像ですが、一見、同じように見えますが、左はベクターオブジェクト、右はラスターオブジェクトです。 それぞれの一部を拡大すると、違いがわかります。右のラスターオブジェクトはギザギザに見えます。これは小さな点(ピクセル)の集まりになっているからです。それに対して、左のベクターオブジェクトは、拡大しても線は綺麗なままです。これは、線の位置情報が数値で管理されているからです。 ベクターオブジェクトについては下のように、線のデータを保有しています。したがって、塗り込みを消すと線が現れます。 ベクター加工はオブジェクトの線に沿ってレーザーを照射することによって、材料を切断することができます。ラスター加工は、オブジェクトの塗り込みに対してレーザーを走査(スキャン)しながら照射を行いますので、材料をマーキングしたり、彫刻することができます。




レーザー加工機の加工精度


加工精度とは、あくまでも機械的な駆動精度を表しています。指定されたA点からB点へ同一条件下で繰り返し移動した際に計測される数値変動の範囲を表しています。レーザーの照射精度は”概ね”駆動精度の範囲内で収まりますが、レーザー加工は熱加工のため、レーザー照射によって加工対象の熱による焼失・収縮・融解が生じます。また対象物の厚みや熱に対する特性が異なりますので、たとえば10cmx10cmの加工データでレーザー加工したからといって、10cmx10cmのサイズで仕上がるものではありません。 スペックにある駆動精度は、編集ソフトで作成したデータと作成された成果物の寸法の差ではありません。 各レーザーの精度は下記となっています。 繰り返し精度

  • レーザーカッター VLS シリーズ±0.0254mm
  • レーザーカッター MUSE±0.0254mm
  • レーザーカッター EMBLASER2±0.0212mm
  • レーザーマーカ LWシリーズ±0.01mm




湾曲した材料への加工


ある程度までは可能です。 レーザー加工は、レーザー発振器(レーザー発振管)から出力されたレーザー光を、集光レンズを使って収束し、光の密度を高めて材料へ照射・吸収させることにより熱を発生し、その熱によって加工を行います。 集光レンズと収束されたレーザー光がいちばん小さくなるポイントまでの距離を焦点距離と言います。この焦点距離の一定の範囲が有効焦点深度=最も加工に適した範囲です。 通常は、この範囲内に収まるように焦点距離を合わせますが、もし仮にこの焦点深度の外側に材料がある場合でも、レーザーがいきなり届かなくなるわけではないので、ある程度までは加工を行うことが出来ます。ただし、湾曲した材料の外側は、レーザー光が届きにくくなるため、加工の品質が悪化します。




レーザー加工機で長尺物の加工


プロッター方式のレーザーカッターは不可、ガルバノ方式のレーザーマーカは可 当社取り扱いのプロッター方式のレーザーカッターは、全てインターロック安全機構が装備されたレーザ製品の安全基準クラス1に該当する装置となっています。したがって、加工する材料は遮蔽された筐体内に収める必要があるため、筐体のサイズを超える長尺物の加工は行うことが出来ません。 当社取り扱いのガルバノ式のファイバーレーザーマーカ、CO2レーザーマーカーについては、筐体内での加工に限定されないため(レーザ製品の安全基準クラス4に該当)加工材料のサイズは問いません。ただし、レーザー光を遮る遮蔽物がないため、使用するレーザーの波長に応じた保護メガネ(ゴーグル)を装着する必要があります。




レーザー加工機で材料に着色


CO2レーザーとファイバーレーザーで異なります。CO2レーザーについては、あくまでも熱加工ですので、色を付ける用途ではご利用いただけません。ただし、熱による変色が結果として着色というケースになることがあります。 レーザーマーカについては、材料が金属の場合、意図的に照射の設定を変えることで、その金属なりに、ある程度の(結果としての)着色を行う事ができる場合があります。パルス幅の変調が可能なM7-MOPAのLW-MFシリーズは一定のカラーマーキングが可能です。





レーザー導入に関するFAQ

レーザー加工機を使うための資格が必要?


資格は必要ありません。 レーザーの使用に際して、特別な資格や免許は必要ありません。 ただしファイバーレーザーマーカ(クラス4レーザ製品)の使用にあたっては、レーザー安全管理者を任命し、安全管理を徹底する必要があります。(厚生労働省:レーザー光線による障害防止対策要綱に準拠)




レーザー加工機の他に必要な設備


CO2レーザー加工の場合は、排気ユーティリティが必要です。 レーザー加工、とくにCO2レーザーによる加工は、熱加工による材料の燃焼・融解によるものなので、副産物として噴煙・粉塵・臭気が発生します。これら副産物をレーザー加工機筐体内から除去するために排気のための装置が必要です。排気の際の、近隣環境への配慮の度合いによって、簡易的な排気ファンや集塵脱臭器など、複数の選択肢があります。 レーザーマーカーの場合は、排気ユーティリティは基本的には不要ですが、プラスチックへのマーキングや金属板を深く彫刻する場合は、それぞれ臭いや粉塵が生じますのでケースバイケースで集塵機、集塵脱臭装置が必要になります。




加工データを作成するソフトウェア


ドロー系グラフィックソフトをご用意ください。 グラフィックデータを作るためのソフトとしては、大きく分けるとドロー系ソフト、ペイント系ソフトに分けられます。ドロー系ソフトは、ベクターグラフィックの作成に必須です。ちなみに、CADソフトもドロー系に分類されます。 レーザー加工するためのソフトウェアですが、切断加工を行うためにはドロー系と呼ばれるグラフィックソフトが必要になりますので、切断加工を行う場合はドロー系ソフトとなります。 ただし、彫刻やマーキングだけであればペイント系ソフトでも可能ですが、基本的にはドロー系ソフトをご用意いただくほうがよいです。 レーザー加工で推奨される、主なドロー系ソフトウェア Adobe® Illustrator®・CorelDRAW®・SOLIDWORKS・AutoCAD® ※MUSEおよびEMBLASER2にはグラフィック編集ソフトが付属していますが、使い勝手の観点から上記ソフトウェアをご用意いただくのがお勧めです。 ファイバーレーザーマーカーには編集・制御ソフトが付属しますので、ソフトウェアのご用意は不要です。




レーザー加工機を使うための電源環境


当社が取り扱うレーザー加工機は家庭用電源(100V)で使用出来ます。 当社が取り扱うレーザー製品は、低電力なので通常の家庭にある電源で使用できます。 レーザーは、周辺機器も含めると8A-15A程度の電流を必要とします。(レーザー出力によって変化します。) 一般的な家庭用のブレーカーは20Aなので、レーザーシステムも含めて、この上限を超えないように気をつける必要があります。 レーザー設備と電子レンジ、ドライヤー、掃除機、電気ストーブなど消費電力の多い機器を同時に使用するとブレーカーが落ちる可能性が高まります。 ただし回路(系統)の異なるエアコンは使用しても問題ありません。 詳しくはこちら『レーザーの設置環境』をご覧ください。




消耗品とランニングコスト


ランニングコスト CO2レーザーは、その仕組みからレーザーガスが消耗品扱いとなります。 スラブ式レーザーは、概ね8,000-10,000時間の使用が可能なので、年数にして概ね3-5年でガスの再チャージが必要です。 ガラス管レーザーは、ガスの再チャージはできません。概ね1,500-2,000時間で発振管の交換が必要です。一般的には1年前後で交換が必要です。(中には6ヶ月で交換が必要な場合があります) 金触媒を使った45Wガラス管については3,000ー6,000程度まで寿命が伸びることもあります。 ファイバーレーザーは、固体レーザーなのでCO2などの気体レーザーにくらべて10万時間という耐久性を誇ります。 ※レーザー発振器・発振管の寿命については、期間を保証するものではありません。 その他、レンズやミラーなどの光学系部品、駆動系のベルトなどのパーツ、集塵装置のフィルターなど、使用に伴う摩耗・消耗や経年劣化で交換しなければならない部品があります。 詳しくはこちら『 ランニングコスト』をご覧ください。




レーザー製品の法定耐用年数


当社が取り扱うレーザー加工機は、さまざまな用途にお使いいただけるため、最終的にはどういった製品を生産するかによって異なります。




レーザー製品のレンタル


こちら『レーザーレンタルサービス』をご覧ください。




リースとレンタルの違い


リースとレンタルの大きな違いは、契約期間の長さと物件(レーザー製品)の所有者です。リースの場合は、お客様に代わってリース会社が物件を購入し、長期間、お客様に貸し出すという形態になります。したがって、リースの場合は契約期間中の中途解約が出来ません。レンタルは、物件の所有者が短期間お客様に貸し出す契約となります。当社はレンタル業者ではありませんので、レンタル業務を行っていませんが、一般的にレンタル料金はリース料金よりも高額な価格設定となります。